Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Infection ; 2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2280266

ABSTRACT

PURPOSE: Influenza infections have substantial impact on healthcare institutions. While vaccination is the most effective preventive measure against influenza infection, vaccination coverage in healthcare workers is low. The study investigates the impact of an intensified influenza vaccination campaign in a maximum-care hospital on influenza vaccination coverage in healthcare workers during the COVID-19 pandemic in 2020/21. METHODS: Building on findings from our previously published review Schumacher et al. (Infection 49(3): 387, 2021), an intensified influenza vaccination campaign comprising a mobile vaccination team providing on-site vaccination and vaccination at a recurring central vaccination site in addition to promotional measures was performed and analysed regarding vaccination coverage. A survey querying vaccination motivation was performed. Campaign strategies and vaccination coverage of influenza seasons between 2017/18 and 2019/20 were analysed. RESULTS: The influenza vaccination campaign 2020/21 led to a significant 2.4-fold increase yielding an overall vaccination coverage of 40% among healthcare workers. A significant increase in vaccination coverage was observed across all professional fields; especially among nurses, a 2.7-fold increase, reaching a vaccination coverage of 48%, was observed. The COVID-19 pandemic positively influenced vaccination decision in 72% of first time ever or first time in over ten years influenza vaccinees. Vaccination coverage during prior vaccination campaigns focusing on educational measures did not exceed 17%. CONCLUSION: A mobile vaccination team providing on-site vaccination and vaccinations at a central vaccination site in addition to promotional measures can be implemented to increase influenza vaccination coverage in healthcare workers. Our concept can inform influenza and other vaccination campaigns for healthcare workers.

2.
Eur J Cancer ; 181: 102-118, 2023 03.
Article in English | MEDLINE | ID: covidwho-2230357

ABSTRACT

The novel coronavirus SARS-CoV-2 and the associated infectious disease COVID-19 pose a significant challenge to healthcare systems worldwide. Patients with cancer have been identified as a high-risk population for severe infections, rendering prophylaxis and treatment strategies for these patients particularly important. Rapidly evolving clinical research, resulting in the recent advent of various vaccines and therapeutic agents against COVID-19, offers new options to improve care and protection of cancer patients. However, ongoing epidemiological changes and rise of new virus variants require repeated revisions and adaptations of prophylaxis and treatment strategies to meet these new challenges. Therefore, this guideline provides an update on evidence-based recommendations with regard to vaccination, pharmacological prophylaxis and treatment of COVID-19 in cancer patients in light of the currently dominant omicron variants. It was developed by an expert panel of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO) based on a critical review of the most recent available data.


Subject(s)
COVID-19 , Communicable Diseases , Neoplasms , Humans , COVID-19/prevention & control , COVID-19/complications , SARS-CoV-2 , Neoplasms/therapy , Neoplasms/drug therapy , Communicable Diseases/complications , Communicable Diseases/drug therapy , Vaccination
4.
BMC Med Res Methodol ; 22(1): 225, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-2002110

ABSTRACT

BACKGROUND: The use of routine data will be essential in future healthcare research. Therefore, harmonizing procedure codes is a first step to facilitate this approach as international research endeavour. An example for the use of routine data on a large scope is the investigation of surgical site infections (SSI). Ongoing surveillance programs evaluate the incidence of SSI on a national or regional basis in a limited number of procedures. For example, analyses by the European Centre for Disease Prevention (ECDC) nine procedures and provides a mapping table for two coding systems (ICD9, National Healthcare Safety Network [NHSN]). However, indicator procedures do not reliably depict overall SSI epidemiology. Thus, a broader analysis of all surgical procedures is desirable. The need for manual translation of country specific procedures codes, however, impedes the use of routine data for such an analysis on an international level. This project aimed to create an international surgical procedure coding systems allowing for automatic translation and categorization of procedures documented in country-specific codes. METHODS: We included the existing surgical procedure coding systems of five European countries (France, Germany, Italy, Spain, and the United Kingdom [UK]). In an iterative process, country specific codes were grouped in ever more categories until each group represented a coherent unit based on method of surgery, interventions performed, extent and site of the surgical procedure. Next two ID specialist (arbitrated by a third in case of disagreement) independently assigned country-specific codes to the resulting categories. Finally, specialist from each surgical discipline reviewed these assignments for their respective field. RESULTS: A total number of 153 SALT (Staphylococcus aureus Surgical Site Infection Multinational Epidemiology in Europe) codes from 10 specialties were assigned to 15,432 surgical procedures. Almost 4000 (26%) procedure codes from the SALT coding system were classified as orthopaedic and trauma surgeries, thus this medical field represents the most diverse group within the SALT coding system, followed by abdominal surgical procedures with 2390 (15%) procedure codes. CONCLUSION: Mapping country-specific codes procedure codes onto to a limited number of coherent, internally and externally validated codes proofed feasible. The resultant SALT procedure code gives the opportunity to harmonize big data sets containing surgical procedures from international centres, and may simplify comparability of future international trial findings. TRIAL REGISTRATION: The study was registered at clinicaltrials.gov under NCT03353532 on November 27th, 2017.


Subject(s)
Clinical Coding , Surgical Procedures, Operative , Surgical Wound Infection , Europe/epidemiology , Humans , Incidence , Surgical Procedures, Operative/adverse effects , Surgical Wound Infection/epidemiology
6.
Blood Cancer J ; 12(5): 86, 2022 05 31.
Article in English | MEDLINE | ID: covidwho-1873485

ABSTRACT

The efficacy of SARS-CoV-2 vaccination in patients with hematological malignancies (HM) appears limited due to disease and treatment-associated immune impairment. We conducted a systematic review of prospective studies published from 10/12/2021 onwards in medical databases to assess clinical efficacy parameters, humoral and cellular immunogenicity and adverse events (AE) following two doses of COVID-19 approved vaccines. In 57 eligible studies reporting 7393 patients, clinical outcomes were rarely reported and rates of SARS-CoV-2 infection (range 0-11.9%), symptomatic disease (0-2.7%), hospital admission (0-2.8%), or death (0-0.5%) were low. Seroconversion rates ranged from 38.1-99.1% across studies with the highest response rate in myeloproliferative diseases and the lowest in patients with chronic lymphocytic leukemia. Patients with B-cell depleting treatment had lower seroconversion rates as compared to other targeted treatments or chemotherapy. The vaccine-induced T-cell response was rarely and heterogeneously reported (26.5-85.9%). Similarly, AEs were rarely reported (0-50.9% ≥1 AE, 0-7.5% ≥1 serious AE). In conclusion, HM patients present impaired humoral and cellular immune response to COVID-19 vaccination with disease and treatment specific response patterns. In light of the ongoing pandemic with the easing of mitigation strategies, new approaches to avert severe infection are urgently needed for this vulnerable patient population that responds poorly to current COVID-19 vaccine regimens.


Subject(s)
COVID-19 , Hematologic Neoplasms , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Hematologic Neoplasms/complications , Hematologic Neoplasms/therapy , Humans , Prospective Studies , SARS-CoV-2
7.
Vaccine ; 40(31): 4090-4097, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-1867869

ABSTRACT

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has evidenced the key role of vaccine design, obtention, production and administration to successfully fight against infectious diseases and to provide efficient remedies for the citizens. Although clinical trials were rapidly established during this pandemic, identifying suitable study subjects can be challenging. For this reason, the University Hospital Cologne established a volunteer registry for participation in clinical trials first in Germany, which has now been incorporated into the European VACCELERATE clinical trials network and grew to a European Volunteer Registry. As such, VACCELERATE's Volunteer Registry aims to become a common entry point for potential volunteers in future clinical trials in Europe. METHODS: Interested volunteers who would like to register for clinical trials in the VACCELERATE Volunteer Registry can access the registration questionnaire via http://www.vaccelerate.eu/volunteer-registry. Potential volunteers are requested to provide their current country and area of residence, contact information, including first and last name and e-mail address, age, gender, comorbidities, previous SARS-CoV-2 infection and vaccination status, and maximum distance willing to travel to a clinical trial site. The registry is open to both adults and children, complying with national legal consent requirements. RESULTS: As of May 2022, the questionnaire is available in 12 countries and 14 languages. Up to date, more than 36,000 volunteers have registered, mainly from Germany. Within the first year since its establishment, the VACCELERATE Volunteer Registry has matched more than 15,000 volunteers to clinical trials. The VACCELERATE Volunteer Registry will be launched in further European countries in the coming months. CONCLUSIONS: The VACCELERATE Volunteer Registry is an active single-entry point for European residents interested in COVID-19 clinical trials participation in 12 countries (i.e., Austria, Cyprus, Germany, Greece, Ireland, Lithuania, Norway, Portugal, Spain, Sweden and Turkey). To date, more than 15,000 registered individuals have been connected to clinical trials in Germany alone. The registry is currently in the implementation phase in 5 additional countries (i.e., Belgium, Czech Republic, Hungary, Israel and the Netherlands).


Subject(s)
COVID-19 , Clinical Trials as Topic , Patient Participation , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Child , Europe/epidemiology , Humans , Registries , Volunteers
9.
Vaccines (Basel) ; 10(2)2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1690158

ABSTRACT

Patients with cancer are at particular risk for infection but also have diminished vaccine responses, usually quantified by the level of specific antibodies. Nonetheless, vaccines are specifically recommended in this vulnerable patient group. Here, we discuss the cellular part of the vaccine response in patients with cancer. We summarize the experience with vaccines prior to and during the SARS-CoV-2 pandemic in different subgroups, and we discuss why, especially in patients with cancer, T cells may be the more reliable correlate of protection. Finally, we provide a brief outlook on options to improve the cellular response to vaccines.

10.
Front Immunol ; 12: 798276, 2021.
Article in English | MEDLINE | ID: covidwho-1606542

ABSTRACT

Effects of initiation of programmed-death-protein 1 (PD1) blockade during active SARS-CoV-2 infection on antiviral immunity, COVID-19 course, and underlying malignancy are unclear. We report on the management of a male in his early 40s presenting with highly symptomatic metastatic lung cancer and active COVID-19 pneumonia. After treatment initiation with pembrolizumab, carboplatin, and pemetrexed, the respiratory situation initially worsened and high-dose corticosteroids were initiated due to suspected pneumonitis. After improvement and SARS-CoV-2 clearance, anti-cancer treatment was resumed without pembrolizumab. Immunological analyses with comparison to otherwise healthy SARS-CoV-2-infected ambulatory patients revealed a strong humoral immune response with higher levels of SARS-CoV-2-reactive IgG and neutralizing serum activity. Additionally, sustained increase of Tfh as well as activated CD4+ and CD8+ T cells was observed. Sequential CT scans showed regression of tumor lesions and marked improvement of the pulmonary situation, with no signs of pneumonitis after pembrolizumab re-challenge as maintenance. At the latest follow-up, the patient is ambulatory and in ongoing partial remission on pembrolizumab. In conclusion, anti-PD1 initiation during active COVID-19 pneumonia was feasible and cellular and humoral immune responses to SARS-CoV-2 appeared enhanced in our hospitalized patient. However, distinguishing COVID-19-associated changes from anti-PD1-associated immune-related pneumonitis posed a considerable clinical, radiographic, and immunologic challenge.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , COVID-19 Drug Treatment , Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , SARS-CoV-2/drug effects , Adult , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/complications , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Carcinoma, Non-Small-Cell Lung/complications , Carcinoma, Non-Small-Cell Lung/immunology , Humans , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Lung Neoplasms/complications , Lung Neoplasms/immunology , Male , Neoplasm Metastasis , Pneumonia/immunology , Pneumonia/prevention & control , Pneumonia/virology , SARS-CoV-2/immunology
11.
Mol Ther Methods Clin Dev ; 23: 418-423, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1466817

ABSTRACT

Vaccination with the adenoviral-vector-based AstraZeneca ChAdOx1 nCov-19 (Vaxzevria) vaccine is efficient and safe. However, in rare cases vaccinated individuals developed life-threatening thrombotic complications, including thrombosis in cerebral sinus and splanchnic veins. Monitoring of the applied vector in vivo represents an important precondition to study the molecular mechanisms underlying vaccine-driven adverse effects now referred to as vaccine-induced immune thrombotic thrombocytopenia (VITT). We previously have shown that digital PCR (dPCR) is an excellent tool to quantify transgene copies in vivo. Here, we present a highly sensitive dPCR for in situ quantification of ChAdOx1 nCoV-19 copies. Using this method, we quantified vector copies in human plasma 24, 72, and 168 h post vaccination and in a variety of murine tissues in an experimental vaccination model 30 min post injection. We describe a method for high-sensitivity quantitative detection of ChAdOx1 nCoV-19 with possible implications to elucidate the mechanisms of severe ChAdOx1 nCov-19 vaccine complications.

12.
Internist (Berl) ; 62(11): 1191-1201, 2021 Nov.
Article in German | MEDLINE | ID: covidwho-1453682

ABSTRACT

The ongoing COVID-19 pandemic represents an emergency situation of devastating proportions. To mitigate its effects, several safe and effective vaccines have been developed in a very short period of time. Currently, four vaccines have been approved by the European Medicines Agency (EMA) and are in use in Germany. These include two mRNA vaccines and two vector-based vaccines. They all show very good protective efficacy, especially against severe courses of disease and can significantly contain the pandemic by reducing viral transmission. This article focuses on the development and mechanism of action of the vaccines, their safety and efficacy profile as well as indications for vaccination and current recommendations for the use of vaccines in special groups of people, such as convalescent, immunosuppressed and pregnant patients. Finally, currently open scientific questions are addressed.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Female , Humans , Pandemics , Pregnancy , SARS-CoV-2
13.
Vaccines (Basel) ; 9(3)2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1125926

ABSTRACT

We are in the midst of a pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19). SARS-CoV-2 has caused more than two million deaths after one year of the pandemic. The world is experiencing a deep economic recession. Safe and effective vaccines are needed to prevent further morbidity and mortality. Vaccine candidates against COVID-19 have been developed at an unprecedented speed, with more than 200 vaccine candidates currently under investigation. Among those, 20 candidates have entered the clinical Phase 3 to evaluate efficacy, and three have been approved by the European Medicines Agency. The aim of immunization is to act against infection, disease and/or transmission. However, the measurement of vaccine efficacy is challenging, as efficacy trials need to include large cohorts with verum and placebo cohorts. In the future, this will be even more challenging as further vaccine candidates will receive approval, an increasing number of humans will receive vaccinations and incidence might decrease. To evaluate novel and second-generation vaccine candidates, randomized placebo-controlled trials might not be appropriate anymore. Correlates of protection (CoP) could be an important tool to evaluate novel vaccine candidates, but vaccine-induced CoP have not been clearly defined for SARS-CoV-2 vaccines. In this review, we report on immunogenicity against natural SARS-CoV-2 infection, vaccine-induced immune responses and discuss immunological markers that can be linked to protection. By discussing the immunogenicity and efficacy of forerunner vaccines, we aim to give a comprehensive overview of possible efficacy measures and CoP.

14.
Eur J Cancer ; 147: 154-160, 2021 04.
Article in English | MEDLINE | ID: covidwho-1077873

ABSTRACT

The worldwide spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated infectious coronavirus disease (COVID-19) has posed a unique challenge to medical staff, patients and their families. Patients with cancer, particularly those with haematologic malignancies, have been identified to be at high risk to develop severe COVID-19. Since publication of our previous guideline on evidence-based management of COVID-19 in patients with cancer, research efforts have continued and new relevant data has come to light, maybe most importantly in the field of vaccination studies. Therefore, an update of our guideline on several clinically important topics is warranted. Here, we provide a concise update of evidence-based recommendations for rapid diagnostics, viral shedding, vaccination and therapy of COVID-19 in patients with cancer. This guideline update was prepared by the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology by critically reviewing the currently available data on these topics applying evidence-based medicine criteria.


Subject(s)
COVID-19 Testing/standards , COVID-19 Vaccines/therapeutic use , COVID-19 , Neoplasms , SARS-CoV-2/physiology , Virus Shedding/physiology , Antiviral Agents/therapeutic use , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , COVID-19/virology , COVID-19 Testing/methods , Evidence-Based Medicine/standards , Evidence-Based Medicine/statistics & numerical data , Germany/epidemiology , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/virology , Hematology/organization & administration , Hematology/standards , Humans , Immunization, Passive/methods , Immunization, Passive/standards , Infectious Disease Medicine/organization & administration , Infectious Disease Medicine/standards , Medical Oncology/organization & administration , Medical Oncology/standards , Neoplasms/diagnosis , Neoplasms/epidemiology , Neoplasms/therapy , Neoplasms/virology , SARS-CoV-2/immunology , Societies, Medical/standards , Vaccination/methods , Vaccination/standards , COVID-19 Serotherapy
15.
Infection ; 49(3): 387-399, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-962163

ABSTRACT

PURPOSE: Increasing influenza vaccination coverage in healthcare workers is a challenge. Especially during the ongoing COVID-19 pandemic, high vaccination coverage should be attained. This review analyzed strategies to increase influenza vaccination coverage in healthcare workers. METHODS: A literature search using PubMed was conducted and 32 publications on influenza vaccination campaigns for healthcare workers were reviewed for key interventions and resulting vaccination coverage. RESULTS: Among key interventions analyzed, mandatory vaccination policies or multifaceted campaigns including a vaccinate-or-wear-a-mask policy as well as mandatory declination reached vaccination coverage in healthcare workers of over 90%. Although campaigns solely based on education and promotion or on-site-vaccination did not regularly exceed an absolute vaccination coverage of 40%, a substantial relative increase in vaccination coverage was reached by implementation of these strategies. CONCLUSION: Mandatory vaccination policies are effective measures to achieve high overall vaccination coverage. In clinics where policies are infeasible, multifaceted campaigns comprising on-site vaccination, vaccination stands and educational and promotional campaigns as well as incentives should be implemented. Lessons learned from influenza campaigns could be implemented in future SARS-CoV-2 vaccination campaigns.


Subject(s)
Health Personnel , Immunization Programs , Influenza Vaccines/administration & dosage , Vaccination Coverage , Humans , Immunization Programs/legislation & jurisprudence , Immunization Programs/methods , Immunization Programs/organization & administration , Immunization Programs/statistics & numerical data , Influenza A virus/immunology , Influenza, Human/prevention & control , Vaccination
16.
Eur J Cancer ; 140: 86-104, 2020 11.
Article in English | MEDLINE | ID: covidwho-778791

ABSTRACT

Since its first detection in China in late 2019 the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated infectious disease COVID-19 continue to have a major impact on global healthcare and clinical practice. Cancer patients, in particular those with haematological malignancies, seem to be at an increased risk for a severe course of infection. Deliberations to avoid or defer potentially immunosuppressive therapies in these patients need to be balanced against the overarching goal of providing optimal antineoplastic treatment. This poses a unique challenge to treating physicians. This guideline provides evidence-based recommendations regarding prevention, diagnostics and treatment of SARS-CoV-2 infection and COVID-19 as well as strategies towards safe antineoplastic care during the COVID-19 pandemic. It was prepared by the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO) by critically reviewing the currently available data on SARS-CoV-2 and COVID-19 in cancer patients applying evidence-based medicine criteria.


Subject(s)
Antineoplastic Agents/therapeutic use , Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Delivery of Health Care/standards , Evidence-Based Practice/standards , Neoplasms/drug therapy , Pneumonia, Viral/complications , Practice Guidelines as Topic/standards , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Disease Management , Germany/epidemiology , Humans , Neoplasms/epidemiology , Neoplasms/virology , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Prognosis , SARS-CoV-2 , Societies, Medical
SELECTION OF CITATIONS
SEARCH DETAIL